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Computation of Inviscid Flow Over Blunt Bodies
Having Large Embedded Subsonic Regions

K. James Weilmuenster* and H. Harris Hamilton IIT
NASA Langley Research Center, Hampton, Virginia

A computer program, HALIS, designed to compute the inviscid flowfield about complex three-dimensional
bodies at high angles of attack is described. The HALIS code is shown to accurately define the flowfield about
both simple and complex three-dimensional geometries through comparison with experimental data and
established numerical procedures. Results of computations of the flowfield about a modified Space Shuttle
Orbiter are presented. These solutions cover the first 383 in. of the vehicle for angles of attack of 25-45 deg.
Analysis of these computational results shows that the subsonic region on the Shuttle windward surface can be

extensive at high angles of attack.

Introduction

DVANCES in computational techniques and computers

in the past few years make it practical to compute the
steady inviscid flowfield about complex three-dimensional
bodies, such as the Space Shuttle Orbiter or other advanced
entry vehicles, in their actual supersonic or hypersonic flight
environment. The inviscid flowfield provides surface
pressures, which can be integrated to obtain aerodynamic
loads, and other flow properties which are required to
calculate surface heating rates! needed to define the thermal
environment.

These vehicles enter the atmosphere at relatively large
angles of attack, which will lead to one of two classes of
problems (see Fig. 1). If the angle of attack is moderate (25-30
deg or less), the subsonic portion of the flowfield is generally
confined to the vehicle nose. Several papers®’ have presented
time-asymptotic methods for efficiently solving the three-
dimensional inviscid flow over blunt-nosed bodies at
moderate angles of attack where the subsonic region is
relatively small. These solutions provide a data surface,
downstream of the subsonic region, on which the local flow
velocity is supersonic. Several papers®® have presented
methods for continuing the solution downstream in the
supersonic region using spatial marching techniques. Since
these techniques use spatial marching, they require relatively
low computer storage. These methods have been shown to
provide good results unless additional embedded pockets of
subsonic flow are encountered (such as near the leading edge
of wings) where the spatial marching techniques break down.

When the angle of attack is large (in the range 30-45 deg or
higher), the subsonic region is no longer confined to the nose,
but extends much further downstream and can envelop much
of the lower surface (see Fig. 1). Since the entire subsonic
region must be computed simultaneously, the time-asymptotic
portion of the solution will require many more grid points
than for the moderate angle-of-attack case discussed
‘previously. Therefore codes must be structured for computers
that have the storage and computational speed required to
solve this type of problem (which may require between 25,000
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and 90,000 grid points). Thus existing time-asymptotic
methods?? are not suited to solve the flow over complete
vehicles with complex three-dimensional geometries at high
angle of attack. In Ref. 10, it is shown that a vector-
processing computer is ideally suited for solving this type of
large flowfield problem.

This paper presents a time-asymptotic method that is being
developed for the CDC Cyber 203 vector-processing computer
which will be able to solve the flow over complex three-
dimensional bodies (Shuttle-like geometries at large angles of
attack) where large embedded subsonic regions occur. Results
are presented in this paper which demonstrate the capability
of the high alpha inviscid solution code, HALIS, to compute
the flowfield over relatively simple geometries with large
embedded subsonic regions and over the Space Shuttle Orbiter
at large angles of attack.

Coordinate Systems

The solution technique used in this paper requires that all
coordinate lines extending from the body to the shock
originate at a point on the body, and terminate at a point on
the bow shock. When treating short blunt bodies, a spherical
coordinate system naturally satisfies these requirements.
However, when a body becomes many nose radii long, that
region of the flowfield downstream of the nose cap is better
described in a cylindrical coordinate system. Thus a combined
spherical-cylindrical coordinate system, as shown in Fig. 2, is
used. In this right-handed system, the spherical and cylin-
drical coordinate systems are coupled at the 0=I11/2, z=0
plane where the two systems are coincident. Computations
will be carried out in the spherical domain over
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Fig. 1 External flowfields, super/hypersonic flight regime.
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Fig. 2 Physical coordinate system.

and in the cylindrical domain over
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A typical representation of the physical grid system is shown
in Fig. 3a, a symmetry plane view, and in Fig. 3b, a cross-flow
plane view which corresponds to the exit plane of Fig. 3a. To
improve the clarity of these two figures, a number of grid lines
have been removed. As can be seen from the figures, the
coordinate system in the physical domain is a skewed,
nonorthogonal system.

Method of Solution
Flow Equations

To better utilize the vector-processing characteristics of the
CDC Cyber 203 computer, flowfields are determined by
solving the time-dependent, three-dimensional, compressible
Euler equations in conservation form as follows:

W 8F oH G
— + — + Q=0 )

—+—+
at  dx, dx, Ox,

The equations have been written in conservation form so that
embedded shock waves can be captured. The vectors W, F, H,
and G represent the usual conserved quantities in the
(x;,X;,X;) coordinate system and the vector @ contains all
terms that arise from the use of a non-Cartesian system. A
general form of the three-dimensional Navier-Stokes
equations may be found in Appendix A of Ref. 11. The form
of the vectors W, F, G, H, and Q in both the spherical and
cylindrical coordinate systems can be determined from those
equations by deleting the viscous terms and substituting the
appropriate metric coefficients and coordinates.

In the spherical system, the flow equations must be solved
along the negative z axis which corresponds to §=1II for all
values of ¢ and r. Along this line, Eq. (1) does not hold
because of a singularity. A reduced set of equations, valid
only along the negative 7 axis, have been derived and are used
in all computations here.

Transformations
The physical domain is transformed into two separate
computational cubes, one corresponding to each coordinate
system, by the following equations, which allow the
description of a general body in terms of its radius. For the
spherical system

r— rbody(qs’e)

n= O<y=<l
rshock (t,¢>,0) —rbody(¢’0)
¢+11/2
=" 0<y=<I
12 e ¥
I1-0
= = Osw=xl 2
=12 w (03]

J. AIRCRAFT

SHOCK

SPHERICAL
SYSTEM

i'c?LlNDRICAL
a) SYSTEM

Fig. 3a)
physical grid in the symmetry
plane for a typical body shape;
b) Schematic of physical grid in
the cross-flow plane for a
typical body shape.

Schematic  of

and for the cylindrical system

r— rbody(¢,Z)
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In Eq. (1), the partial derivatives with respect to time and the
physical coordinates are replaced by the partial derivatives
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with respect to the computational time and coordinate space
by applying chain-rule differentiation to Eqs. (2) and (3).
Although the physical mesh is transformed to a com-
putational mesh, the velocity components are not trans-
formed and retain the same magnitude and direction in the
computational mesh as they do in the physical grid.

Boundary Conditions

For inviscid flow, the wall-boundary condition requires
that the velocity component normal to the wall be zero. Since,
in general, the physical grid will not be normal to the wall, nor
will the cross flow and axial components of velocity be
parallel to the body surface, the cross flow and axial com-
ponents of velocity at the surface are computed and the radial
component of velocity is set such that the condition V-7 =0is
satisfied. Here, V is the total velocity at the wall and 7 is the
outer unit normal at the wall. In addition, the body surface
entropy is held constant and the computed wall density, along
with this entropy, are used to determine the surface internal
energy and pressure.

The bow shock, which is the outer boundary of the
flowfield, is a time-dependent boundary condition, since the
postshock properties and shock location are a function of the
computational time increment. The procedure for handling
the time-dependent shock is an extension to three dimensions
of the method outlined in Ref. 12. Briefly, the postshock
properties are determined by the postshock pressure and the
local inclination of the shock to the freestream velocity
vector. The postshock pressure is taken to be the pressure at
the shock location determined by the integration of the
flowfield equations. From this pressure and the shock
geometry, new postshock conditions and a shock velocity can
be determined. The position of the shock is then updated
using the computed shock speed and the local incremental
time step. At convergence, the computed postshock pressure
will give a zero shock velocity and thus a stationary shock
wave.

Calculations in the computational plane corresponding to
the ray #=II are made along the line ¢=—II/2. Flow
properties for other values of ¢ are determined from algebraic
relations similar to those found in Ref. 13. The ¢ =11/2 and
¢ = —II/2 meridional planes are symmetry boundaries. Flow
properties in these meridional planes are computed using a
regular interior point differencing and planes of reflected
propertics at ¢=II/2+A¢ and ¢=—-11/2-A¢. Flow
properties in the outflow plane, where the axial flow must be
supersonic, are computed using two point backward dif-
ferences for the axial derivatives.

Numerical Procedure

The computational data base is arranged as shown in Fig. 4.
Each plane has 11 points in the 5 direction (distance between
shock and body) and 50 points in the ¥ (meridional) direction.
There are 55 planes in the streamwise direction with the first
15 being in the spherical system. This computational grid of
30,250 points along with the associated computer code
requires all of the Cyber 203 central memory of 109 words.
However, the data base is arranged in an interleaved!4
manner to make efficient use of the system’s virtual memory
system, should the size of the code ever exceed the available
central memory.

Equation (1) is integrated in time using an unsplit Mac-
Cormack differencing scheme. Additional numerical
dissipation has been added to the numerical scheme by using
the fourth-order damping terms suggested by Barnwell.!? In
the predictor step, computations are carried out by sweeping
through the data from left to right (see Fig. 4) and in the
corrector step, by sweeping through the data from right to left
to remain consistent with the interleaving concept. Rather
than run the solution at one global time step, each grid point
is allowed to proceed at its own local time increment as

INVISCID FLOW OVER BLUNT BODIES 841

Fig. 4 Data base configuration.
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Fig. 5 Profile and cross-flow contour plots of internal energy for
flow about a hemisphere cylinder at 40-deg angle of attack; M, =5.

determined by the CFL condition. This same procedure was
used in Ref. 11.

The solution at the plane at which the spherical and
cylindrical systems are coincident (#=I1/2 or Z=0) is
determined in the spherical system. This requires that data, in
a spherical system that has been extended into the cylindrical
domain, must be determined by interpolation on data in the
cylindrical system. This procedure works well and causes no
apparent numerical problem.

The number of iterations required to obtain converged
solutions varies from about 450 for small angle of attack to
about 1800 for very high angle of attack and seems to have
little dependence on the body shape being considered. This
amount of computational work translates into approximately
10-30 min of CPU time on the CDC Cyber 203 computer. A
solution is considered to be converged when the relative
change in the density at every point in the flowfield is less than
1.0X 104,

Results and Discussion

Initial computations were made of flow over a hemisphere
cylinder. For these computations, the hemisphere was
described in the spherical system and the cylinder in the
cylindrical system. Figure S shows some results of those
calculations in the form of contour plots of internal energy
for a y=1.4, M_ =5 flow at 40-deg angle of attack. In the
profile view, the shock shape, as well as the contours, is seen
to be smooth in the vicinity of the juncture of the two
coordinate systems. Also, on the leeside of the body, the
distance between the shock and body increases rapidly with
increased axial distance. Since the number of points between
the shock and body is fixed, the resolution of the flow in the r
direction on the leeside is greatly reduced. However, this does
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Fig. 6a) Computed and experimental windward and leeward sym-
metry plane wall pressure coefficient distributions for a 15-deg haif-
angle sphere cone at 10-deg angle of attack; M =10.6. b) Computed
and experimental meridional pressure coefficient distributions for a
15-deg half-angle sphere cone at 10-deg angle of attack.

not appear to adversely affect the computations, as can be
seen in the cross-flow contour plot where a fairly strong cross-
flow shock, located near the leeside symmetry plane, has been
captured by the conservative equations, and where the bow
shock shape is smooth in the cross section.

Further computations have been made for flow over a 15-
deg half-angle sphere cone. For this body, the point of cur-
vature discontinuity on the body surface lies in the spherical
coordinate system rather than at the juncture of the two
coordinate systems, as was the case for the hemisphere-
cylinder body. In Fig. 6a, a comparison is made for this body
between the computed windward and leeward wall pressure
coefficient distributions and the experimental data of
Cleary!'s for y=1.4, M_ =10.6 flow at 10-deg angle of at-
tack. As can be seen, the comparison is quite good. For this
same case, Fig. 6b shows a comparison of the computed and
experimental wall pressure coefficients in cross-sectional
planes at two axial stations.

For both the hemisphere-cylinder and sphere-cone
geometries, the subsonic flow regime is confined to the
spherical nose cap even at the angle of attack considered.
How the subsonic region will behave on a body whose cur-
vature changes continuously from nose to trailing edge is of
further interest. Specifically, how will the subsonic region
behave on the windward side of the Space Shuttle Orbiter?

Two versions of the Space Shuttle Orbiter geometry are
shown in Fig. 7. The first conforms as closely as possible to
the actual vehicle except that the canopy and the tail section
have been eliminated. The second geometry has the same
lower surface and upper-symmetry plane profile as the first,
except that the area between strake and wingtips and upper-
symmetry plane surface has been filled in with elliptic curve
segments. Since the windward flowfield is of specific interest,
the simplified Shuttle geometry has been utilized in the
following analysis.
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Fig. 7 Complete and modified Shuttle Orbiter geometry.
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Fig. 8 Windward centerline pressure coefficient vs X/L; a=25 deg,
M, =10.29.

To further validate the HALIS code, for the case of
complex three-dimensional shapes, the flow about the
modified Shuttle vehicle has been computed at an angle of
attack for which both experimental data and numerical results
are available. The numerical results were generated by
STEIN,” a spatial marching code, while the experimental
data'é were obtained in the NASA Ames Research Center 3.5-
ft Hypersonic Wind Tunnel. Figure 8 shows a comparison of
numerical and experimental surface pressure coefficients on
the windward centerline plotted against nondimensional body
length for a 25-deg angle of attack and M, =10.29. The
comparison among all four sets of data is excellent. In fact,
the two numerical methods give almost identical results. This
is interesting since both methods have the same resolution in
the radial and meridional directions but the STEIN code has
an axial resolution eight times greater than the HALIS code.
A further comparison of the experimental and numerical
results for this case is shown in Fig. 9 where meridional
distributions of surface pressure coefficients are plotted for
three different axial locations on the vehicle. The numerical
data are plotted to approximately the tip of the vehicle strake.
There is good agreement between experimental data and both
sets of numerical results for off-axis points on the windward
surface of the body. In Fig. 10 is shown the results for a 45-
deg angle-of-attack case which could not be run using the
STEIN code. Again, M, is 10.29. The windward centerline
surface pressure coefficient is plotted against nondimensional
body length. Again, there is excellent agreement between the
experimental and numerical results. In Fig. 11, the meridional
surface pressure coefficient distributions are shown. Here, the
comparisons are similar to those presented for the 25-deg
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Fig. 9 Computed and experimental meridional pressure coefficient
distributions; o =25 deg, M =10.29.
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Fig. 10 Windward centerline pressure coefficient vs X/L; oo =45 deg,
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Fig. 11 Computed and experimental meridional pressure coefficient
distributions; o =45 deg, M, =10.29.

angle-of attack case. Thus the validity of the HALIS codes
has been established over a wide range of angle of attack.

Figures 12 and 13 show cross-sectional contour plots of
internal energy 383 in. down the vehicle for a M, of 7.32 and
angles of attack of 25 and 45 deg. For both cases, a smooth
shock shape is maintained in the leeside region where the
resolution is very poor. Also, note that the leeside cross-flow
shock strengthens as the angle of attack increases.
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Fig. 12 Cross-section contour plot of
internal energy; Z=383 in., a=25 deg,
M, =1.32.

Fig. 13 Cross-section contour plot of
internal energy; Z=2383 in., a=40 deg,
M, =1.32.

Fig. 14 Computed sonic line locations on the windward body surface
for several angles of attack, M =7.32.

In Fig. 14, sonic line contours are plotted as a function of
angle of attack on a planform view of the windward side of
the vehicle. It is immediately obvious that the area covered by
the subsonic flow is changing at an increasing rate as the angle
of attack is increased. In fact, the axial Mach number gradient
along the surface is very small. Thus any further increases-in
angle of attack will lead to a very large subsonic region on the
windward surface.

Conclusions
In this work, a computer code, HALIS, designed to
compute the inviscid flowfield about complex three-
dimensional bodies at high angle of attack has been described.
Through comparison with experimental data and established
numerical procedures, it has been demonstrated that the
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HALIS code accurately defines the flowfield about both
simple and complex three-dimensional geometries. Results
have been presented of computations to determine the
flowfield about a modified Space Shuttle Orbiter. These
solutions encompass the first 383 in. of the vehicle and include
angles of attack from 25 to 45 deg and show that, at high
angles of attack, the subsonic region on the Shuttle windward
surface can be extensive.
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